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Abstract. It is found here that the 1/2+ first excited state of 9Be is a virtual state with the energy of
-23.5 KeV. The line shape for the excitation of the state is approximated with a simple analytic form
based on the effective range expansion. The partner in 9B of this state is found to be a resonance with a
maximum in the peak at about 1.1 MeV, FWHM of 1.5 MeV, and complex energy of 0.6− i0.75 MeV. The
line shape for its excitation is calculated in terms of the p−8Be phase shift. The phase shifts are obtained
from N−8Be effective potentials deduced from the data on the photodisintegration of 9Be. A possibility
for direct extraction of the energy of the resonant state from experimental data is also discussed, and
an expression for a residue at a virtual state pole in terms of a quadrature taken over the virtual state
eigenfunction is given.

PACS. 21.10.Pc single-particle levels and strength functions – 23.50.+z Decay by proton emission –
24.30.Gd Other resonances – 27.20.+n 6 ≤ A ≤ 19 – 03.65.Nk Nonrelativistic scattering theory

1 Introduction

In the present work, we obtain the properties of the first
excited states of A = 9 nuclei. At low energy these nu-
clei provide a clean example of three–cluster systems with
not easily distortable constituents, thus serving as a test
ground for theoretical multicluster approaches, see e.g. [1,
2]. Reliable information on the properties of these nu-
clei would therefore be very valuable. However, extrac-
tion of this information directly from the available experi-
mental data is hampered by their ambiguities. The cor-
responding data on the low–energy photodisintegration
of 9Be are not in mutual agreement, see [3]. All states
in 9B are particle unbound which hinders the search for
excited states. There exists a long–standing controversy
concerning the properties of the 9B first excited state, as
obtained both experimentally and theoretically, see [4,5].
Theoretical models can help to analyze the data and also
guide future experiments. Along these lines, in [3] a semi–
microscopic model to describe the low–energy photodisin-
tegration of 9Be has been developed. An estimation of the
reliability of various data sets has been obtained with the
help of this model, and a theoretical photodisintegration
cross section has been derived for astrophysical applica-
tions. The model provides N−8Be effective potentials that
reproduce the energy dependence of the cross section. Us-
ing them the properties of the first excited state of 9Be
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are extracted below and estimates for its 9B partner are
obtained.

In the next section we elucidate the nature of the first
excited state of 9Be and obtain its position. We obtain an
analytic form for the line shape of the state and investigate
to what degree the line shape is independent of the specific
excitation process. In Sect. 3 the first excited state of the
9B nucleus is studied. The expression for the line shape
is given, and the position, width and the complex energy
of the state are calculated. A possibility to obtain the
latter quantity from a direct fit to the line shape is also
discussed. In Sect. 4 our results are discussed along with
those in the literature.

Our considerations on the shape of the line in Sect.
2 and 3 are of a rather general applicability. In the Ap-
pendix a formula expressing a residue at a virtual state
pole in terms of a quadrature taken over the virtual state
eigenfunction is given.

2 The first excited level of 9Be

We proceed from the dynamic input for the description of
the system obtained in [3]. In that work, the 9Be photodis-
integration cross section has been calculated in the frame-
work of the following model. The three–body α + α + n
representation of the system has been adopted. The 9Be
ground state wave function has been calculated from the
three–body dynamic equation with αα and αn potentials.
The final continuum state has been chosen as a product of



34 V.D. Efros et al.: The first excited states of 9Be and 9B

Fig. 1. Line shapes for transitions to the first ex-
cited state of 9Be. The solid curve represents the
exact line shape for the photodisintegration pro-
cess calculated with the model of [3]. The long–
dashed curve is the energy dependence k|f(k)|2,
where f is the n−8Be scattering amplitude. The
dash–dotted curve stands for (7). The dotted
curve represents the energy dependence given by
the second factor from (7)

the intrinsic wave function of the 8Be resonance and the
n−8Be relative motion function. The latter wave func-
tion has been calculated from the Woods–Saxon potential
whose parameters were determined by fitting to several
radioactive isotope data.

The model thus gives n−8Be effective potentials that
allow extracting the properties of the first excited state
of 9Be. First, let us comment on the status of the re-
sults obtained in this way. The model accounts for only
the two–body n−8Be photodisintegration and disregards
the direct three–body α+α+ n disintegration. The cross
section for the direct α + α + n disintegration is presum-
ably very small due to the threshold regime as also con-
firmed in experiment, see [3]. Further, the properties of
the state considered are determined by the phase shift δ
of n−8Be scattering. So, the question arises whether this
phase shift can be correctly obtained with the help of the
model. In this connection one can admit that in the vicin-
ity of the first excited state of 9Be the energy dependence
of the photodisintegration cross section is also determined
by this phase shift. To a degree this holds true, use of
the two–body 8Be+n dynamics to extract the properties
of the state does not contain any restrictions. In [3] the
cross section has been fitted for excitation energies up to
0.5 MeV, and in this region the corresponding energy de-
pendence sin2 δ/k dominates the cross section, see Fig. 1
below. Moreover, the initial 9Be ground state is described
realistically in this model. Therefore, use of the two–body
dynamics seems to be sufficient for extracting the prop-
erties of the state considered. In general, these properties
can also be extracted via the fit of an assumed line shape
directly to the data. However, use of the two–body dynam-
ics in conjunction with shell–model considerations allowed
selection between alternative data sets in [3]. Below it will

also help us to obtain the properties of the analog 9B state
relying on the 9Be photodisintegration data.

The fit to the photodisintegration cross section [3] pro-
vides the potentials

V (r) = V0/[1 + e(r−R)/b] (1)

describing n−8Be scattering. The best version

V0 = 35.99 MeV, R = 3.126 fm, b = 0.8108 fm (2)

will be used below. Other potential versions lead to similar
results as commented below.

Let us denote E = (h̄k)2/(2µ) the energy of the rel-
ative n−8Be motion. The potential (1), (2) leads to a
n−8Be scattering amplitude f(k) having a pole at k =
−iκ, κ > 0:

f(k)→ ic0
k + iκ

(3)

as k → −iκ. This means that the first excited state of 9Be
is a virtual state strongly coupled to the n−8Be channel.
The energy of the state is

−(h̄κ)2/(2µ) = −Ē = −23.53 KeV. (4)

This value was obtained via solving the eigenvalue prob-
lem with the virtual state boundary condition, cf. the Ap-
pendix.

Let us consider the shape of the line for a transition
proceeding via the virtual state. The shape depends partly
on the specific way of excitation of the state. The main
energy dependence is universal, however, and it is deter-
mined by the intrinsic properties of the state. We shall
compare the universal energy dependence to the energy
dependence for the process of 9Be photodisintegration and
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thus estimate the dependence of the line shape on the spe-
cific process.

We assume that the cross section for formation of 9Be
in the continuum with the energy E in the vicinity of the
excited level can approximately be presented in the form

σ ∼
∫
k2dk|〈Φ|Ψ−k (J = 1/2+)〉|2δ(k2/(2µ)− E). (5)

Here Φ is some localized state in the subspace of the 9Be
degrees of freedom. It includes the g.s. of 9Be and the (ef-
fective) transition operator accounting for the excitation
mechanism (photodisintegration, e.g.). The transition op-
erator may have an energy dependence that is smooth
at E → 0. The function Ψ−k is the continuum spectrum
function that corresponds to incoming n and 8Be frag-
ments in the relative s–state thus describing the two–
body 8Be+n photodisintegration. The representation (5)
implies that the formation process can be described in
the subspace of the 9Be degrees of freedom. Under this
condition properties of a state reveal themselves indepen-
dently of the interactions with other particles participat-
ing in its formation.1 In (5) the normalization condition
〈Ψ−k |Ψ−k′ 〉 = δ(k − k′)/k2 should be fulfilled, so that the
n−8 Be relative motion function in Ψ−k at large distances
is normalized to e−iδ sin(kr + δ)/(kr).

We may write the k–integral of (5) as a contour integral
where the pole contribution is given by (3), neglecting
influence of other degrees of freedom in Φ, Ψ−k .

The energy dependence of the cross section (5) in the
vicinity of the virtual level is sin2 δ/k. This energy depen-
dence arises if one replaces the outer part sin(kr+δ)/(kr)
of the n−8Be relative motion function in the matrix ele-
ment from (5) by sin δ/(kr). This can be done under the
conditions (kR)2 ¿ 1, and R¿ |a|. Here a is the scatter-
ing length, and R is chosen such that the relative contri-
bution of r > R values to (5) is small. R exceeds the range
of the n−8Be interaction, and the inner part of the final
state wave function Ψ−k acquires the same energy depen-
dence as the outer one. The sin2 δ/k energy dependence is
nothing else as the so called Migdal–Watson factor [6].

We can rewrite the corresponding contribution to the
cross section as const·k|f(k)|2 where f(k) is the s-wave
n−8Be scattering amplitude. Almost the same accuracy
is kept if one takes f(k) within the effective range approx-
imation

f(k) = [−1/a+ (1/2)r0k
2 − ik]−1. (6)

Then one obtains |f(k)|2 ∼ [(E + Ē)(E + E1)]−1. In the
model (1), (2) E1 = 1.569 MeV. Using this expression, it

1 In the framework of the model [3] only the two–body
8Be+n channel is retained in the function Ψ−k while the in-
coming three–body α + α + n channels are disregarded. This
model assumption is also inherent to all the previous work.
One can see, however, that to a first approximation this does
not change the energy dependence of the cross section and thus
does not influence the results

is convenient to present the cross section in the following
form

σ(E) = σm
2
√
EĒ

E + Ē

Ē + E1

E + E1
. (7)

Since Ē ¿ E1 the energy dependence of the cross section
from the threshold up to its maximum is entirely deter-
mined by the second factor in (7). It is then seen that
the maximum of the cross section occurs practically at
the Ē value. With a high precision σm is the value of the
cross section at the maximum. As one can see from (5) the
lowest order correction to (7) is of the form 1 − (E/E2)
where E2 is not small and depends on a specific excitation
process. To a certain degree it can be accounted for via a
renormalization of E1. Equation (5) is the Breit-Wigner
formula with Γ = Γ (E), (or, the one-level R matrix ex-
pression) rewritten in a different form.

In Fig. 1 various universal expressions for the shape of
the line are compared with the exact line shape for the
photodisintegration process calculated in the model of [3].
(E = Eγ − Eth.) The full curve represents the latter line
shape, the long–dashed curve is the energy dependence
∼ k|f(k)|2, the dash-dotted curve represents the expres-
sion (7), and the dotted curve is the energy dependence
given by the second factor from (7). The FWHM value for
the photodisintegration process provided by the first men-
tioned curve is 196 KeV. The FWHM values provided by
the next two curves are 230 and 240 KeV. The latter two
values are process–independent. Thus FWHM may have a
20 per cent dependency on the excitation process. On the
contrary, the position of the maximum in the peak is prac-
tically process–independent coinciding with the absolute
value of the energy of the virtual state.

Experimentally, the energy dependence E1/2(E +
Ē)−1, specific to a virtual state could be confirmed by
measuring the shape of the line from the threshold up to
the region of the maximum with the tagged photon tech-
niques. A simpler, while indirect, way is to study the whole
peak in the (e, e′) reaction and extract the properties of
the state in the way similar to that used above for pho-
todisintegration. In case of accurate and detailed (e, e′)
or (p, p′) data the energy Ē of the state could also be ex-
tracted from the fit of the (7) form or its above–mentioned
extension.

Besides the energy Ē, or the pole position of the n−8Be
scattering amplitude, another quantity to be reproduced
in a microscopic calculation is the residue c0 in the pole,
(3). The exact c0 value was calculated with the formula
derived in the Appendix that represents c0 as an integral
taken over the virtual state eigenfunction. The result is
c0 = 0.7837. We note that with high accuracy both Ē (or
κ, see (4),) and c0 can be expressed in terms of the n−8Be
scattering length a and the effective range r0 . From (6)
one obtains

κ = r−1
0 [(1− 2r0/a)1/2 − 1],

c0 = (1− 2r0/a)−1/2 = (1 + κr0)−1. (8)

The effective range parameters for the potential (1), (2)
are

a = −27.65 fm, r0 = 8.788 fm, (9)
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and the expected accuracy of the above expressions is
about |r0/a|3 ' 1%. Their numerical values proved to be
even more accurate: Ē = 23.51 KeV, c0 = 0.7819. As it is
explained in [3] all other acceptable potentials found there
lead to the a and r0 values very close to those in (9). Hence
the properties of the virtual state given by these potentials
are quite similar.

3 The first excited level of 9B

To calculate the resonant peak for an excitation of the 9B
1/2+ level, we proceed again from (5), only with a different
expression for the pole term but still assuming that there
is only one decay channel, p−8Be, for the state considered.
In the 9B case, disregarding the possibility for the decay
into the N +α+α channel, being less substantiated than
in the 9Be case because of a higher energy with respect
to the three–body threshold, seems still to be reasonable.
The n−8Be potentials obtained in [3] lead presumably to
a good description of the n−8Be 1/2+ phase shifts. Then
one may suggest that the p−8Be 1/2+ phase shifts will
also be properly reproduced with these potentials with an
addition of the Coulomb interaction. This will suffice to
obtain approximately the main properties of the 9B 1/2+

level.
Beyond the range of the nuclear potential the p−8Be

relative motion function χ(r)/kr entering Ψ−k in (5) may
be represented in the form

χ = G sin δ + F cos δ = (sin δ/C)[C(G+ F cot δ)]
≡ (sin δ/C)φ(k, r). (10)

Here δ is the nuclear phase shift, C2 = 2πη[exp(2πη) −
1]−1 is the Coulomb penetrability factor, and F and G
are the Coulomb functions. The possible resonant pole is
contained in the factor sin δ while the function φ defined
in (10) is smooth at low energies. (At k → 0 φ(k, r) →
zK1(z) − (ac/4a)zI1(z), z = 2(2r/ac)1/2, where a is the
scattering length, and ac is the Bohr radius.) To a first
approximation one may use φ(k0, r) in the calculation of
the cross section (5), k0 being chosen in the vicinity of the
resonance. Hence the energy dependence of the excitation
cross section in the resonant peak region is given by the
expression

sin2 δ

kC2
= k
|f(k)|2
C2

=
kC2

(kC2 cot δ)2 + (kC2)2
. (11)

Here f is the nuclear amplitude of p−8Be scattering.
Thus, quite naturally, up to process–dependent correc-
tions the resonant cross section for the excitation of the
state is proportional to the scattering cross section times
a universal factor proportional to a width. The quantity
kC2 cot δ in (11) allows the well–known representation
[−1/a + (1/2)r0k

2 + . . .] − (2/ac)h(1/ack), showing that
it is smooth and finite at E = 0. The kC2 behavior of the
cross section at E → 0 is seen directly from (5) and the
properties of the Coulomb functions.

The p−8Be phase shifts entering (11) were obtained
from the Schrödinger equation with the nuclear potential
(1), (2) plus the Coulomb interaction. The latter took into
account the density distribution in 8Be and the charge
distribution in the α particles:

VCoul(r) = (4e2/r)(2/π)
∫ ∞

0

(sin qr/q)Fα(q)I(q)dq, (12)

where Fα(q) is the charge form factor of the α particle [7],
and

I(q) =
∫ ∞

0

(2/qρ) sin(qρ/2)ψ2(ρ)dρ,

ψ being the 8Be wave function.
The energy dependence (11) obtained indeed proved to

exhibit a pronounced peak, and it is shown in Fig. 2 with
a solid curve. The position Emax of the maximum in the
peak with respect to the p−8Be threshold and the FWHM
value are the following: Emax =1.13 MeV, FWHM=1.64
MeV. The long–dashed curve in Fig. 2 represents the peak
for the other acceptable nuclear potential of the Woods–
Saxon form found in [3] whose parameters are

V0 = 52.86 MeV, R = 2.006 fm, b = 1.051 fm. (13)

For this case Emax = 1.02 MeV, and FWHM=1.43 MeV.
If the peak obtained corresponds to a state then the

scattering amplitude should have a pole in the vicinity
of Emax. Thus we shall search for such a pole. One can
show that when the long–range Coulomb interaction is
switched on, virtual states cease to exist, turning nor-
mally to complex–energy resonances, and this applies to
our case. (It applies also to, e.g., p−−p scattering where,
in contrast to what is often said, there are no virtual
states.) The energy E = E0 − iΓ/2 of a resonance be-
ing connected to the pole of a scattering amplitude, is
process–independent and thus characterizes a resonance
quite precisely even in case of a broad width.

In our case this quantity is computed as a complex
eigenvalue in the p−8Be Schrödinger equation. Here we
used the codes of [8] or, when this is inoperative, the
ρ–series (14.1.4) for F and the corresponding expansion
(14.1.14) – (14.1.19) for G from [9].2 These expansions
are fast convergent for not extremely high values of |ρ|,
|η|.

The resonant pole was found with the following param-
eters: E0 = 0.60 MeV, Γ/2 = 0.77 MeV, and E0 = 0.56
MeV, Γ/2 = 0.70 MeV for the potentials (2) and (13),
respectively. The positions E0 of the resonance are shifted
downwards with respect to the maxima in the peak found

2 We rewrite the latter expansion for l = 0 in the form valid
for complex η values:

G(η, ρ) = C−1{2ηρΦ(η, ρ)[ln(2ρ) + (1/2)[ψ(iη) + ψ(−iη)]

+ 2γ − 1] +

∞∑
k=0

ak(η)ρk}.

Here ψ(z) = Γ ′(z)/Γ (z), γ is the Euler constant, and the quan-
tities Φ(η, ρ) and ak(η) are defined in [9]



V.D. Efros et al.: The first excited states of 9Be and 9B 37

Fig. 2. Line shapes for transitions to the first excited
state of 9B calculated according to (11). The solid
and long–dashed curves are for the potentials with
the parameters (2) and (13), respectively

above, while the widths Γ are close to the FWHM values.
Similar trends were observed for 5He, 5Li resonances [10].
It is interesting to note that the height of the Coulomb
barrier in our case proved to be 0.63 MeV only, i.e. the
resonance with a finite width sits at the top of the bar-
rier. This is possible only when the width of the resonance
becomes so broad that it is comparable to E0.

In conclusion, let us add the following two comments.
First, since the energy E = E0−iΓ/2 of the resonance is a
convenient process–independent quantity to compare with
theory, it would be very useful to extract it directly from
future experimental data without constructing a model for
the excitation process. Such a task has been accomplished
successfully in some cases, see e.g. [10,11]. However it is
not clear whether this is possible in practice for the broad
resonance we consider. We perform a numerical experi-
ment to clarify this issue. We explore the possibility to re-
construct the E0 and Γ values obtained proceeding from
a reasonable fit to the resonant peak of the form (11), see
Fig. 2, calculated in the same model, (2). We fit the peak
with the expression

a1
kC2

[a2 + a3(E − E′) + a4(E − E′)2]2 + (kC2)2
(14)

related to (11). Here E′ = 1.5 MeV, the fit is extended
over the values (E′−Γ/2) ≤ E ≤ (E′+Γ/2) at which the
cross section exceeds a half of its value at the maximum,
and ai are fitting parameters. Choosing the form of the
expression (14) it was taken into account that the effective
range approximation is not accurate enough in the peak
region and that kC2 cot δ has no minimum in that region
in our case. The resonant E value, E = E0 − iΓ/2, is
obtained as a zero of the expression a2 + a3(E − E′) +

a4(E − E′)2 − ikC2 that corresponds to the pole of the
scattering amplitude.

The search of the least square minimum was performed
with respect to E0, Γ , and a3 with values taken on some
grids. At given values of these parameters a2 and a4 were
fixed via equating to zero real and imaginary parts of
the above expression. The a1 value was found analyt-
ically from the least square minimum requirement. (If
kC2 cot δ is completely reproduced by the fit, we should
have a1 = 1.)

It occurred that the fit is unstable in this form, and a1

takes unrealistic values. Let us then remove the search of
the Γ value admitting instead the hypothesis Γ =FWHM.
This condition is fulfilled with sufficient accuracy in our
case, and also in the 5He, 5Li cases [10]. This modified
procedure leads to E0 values that are quite stable and close
to the true one. The stability was checked by changing the
stepsize in the a3 parameter.

The second comment concerns the value of the effec-
tive range r0 for the p−8Be scattering. For the potential
(2), for example, it proved to be 3.01 fm i.e. much smaller
then that from (9) for the n−8Be case. This, however, does
not mean that the range of the p−8Be nuclear interaction
is sizably different from that for the n−8Be interaction.
The effective range can serve as a measure of the interac-
tion range when aÀ r0 and, in addition, the zero energy
scattering wave function u(r) entering the effective range
definition is close to unity at the edge of the well R. This
holds true for the neutral case but not when the rather
strong Coulomb interaction is present. The latter inter-
action suppresses the wave function at the R value, so
that the range of nuclear interaction may be estimated as
r0/u

2(R).
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4 Discussion

Basing on the model of [3] we obtained that the first ex-
cited level of 9Be is a virtual state with the energy −Ē =-
23.5 KeV with respect to the n−9Be threshold. It is shown
that the peak position for an excitation of this state practi-
cally coincides with the Ē value while the FWHM value of
the peak may sizably depend on a specific excitation pro-
cess. Within the effective range approximation the prop-
erties of the state are reproduced with a high accuracy.
The line shape is aproximated with a simple analytic form
based on the effective range expansion.

In [12] a single–level R-matrix fit to the photodisin-
tegration data of [13] led to the description of the state
considered as a complex–energy resonant state. However
the data [13] are at variance with the earlier data, and
it was concluded in [3] that the latter ones are prefer-
able. The positions of maxima in the available experimen-
tal 9Be(p, p′) spectra [14,15] do not contradict the above
listed value of 23.5 KeV.

In [15] the quantities pertaining to the 1/2+ state of
9Be were presented in the form of parameters entering the
Breit–Wigner formula

σ(E) =
8π2

9
e2

h̄c
EγB(E1, Eγ)

× Γ (E)/2
(E − ER)2 + [Γ (E)/2]2

, (15)

that was fitted to the (e, e′) data of that paper. Here
Γ (E) = G

√
E, G being the reduced width of the level.

The values ER = 19± 7 KeV, Γ = 217± 10 KeV were re-
ported, the latter value refers presumably to Γ (ER). These
values are quoted in the review article [16]. They cannot
be correct since they lead to a quite unrealistic Ē value,
i.e. that of the maximum of an excitation cross section, of
0.6 KeV. Based on Fig. 6 from [15] one may suggest, how-
ever, that these values do not refer to ER and Γ from (15)
but to the position of the maximum of the cross section
and the FWHM, respectively. If it is the case, these values
are in agreement with ours. (Absence of the information
on energy dependence of B(E1, Eγ) inhibits a precise con-
clusion concerning the FWHM.)

In [1] a microscopic study of the spectrum of 9Be at
the 9–nucleon level was undertaken. The 1/2+ level was
not detected at all. The reason may lie in that the method
of complex scaling used in that work is suited for search
of complex–energy resonant states but not virtual states.

Further, we studied the first excited state in 9B in the
present work using the nuclear potentials derived in [3]
from the analysis of the 9Be photodisintegration data and
adding the Coulomb interaction between p and 8Be. An
approximate process–independent expression for the line
shape of the state in terms of the p−8Be phase shift is
obtained. The position of the peak with respect to the
p−8Be threshold and its FWHM given by this expres-
sion are about 1.1 MeV and 1.5 MeV, respectively. The
peak considered is caused by a complex–energy pole in
the p−8Be scattering amplitude. The pole proved to be

located at energy E = E0− iΓ/2 with E0 ' 0.6 MeV and
Γ ' 1.5 MeV.

In [4] a prediction for the peak of the 9B resonance
was obtained: Emax = 1.13 MeV, FWHM=1.40 MeV. It
is close to ours while the underlying assumptions of that
work were rather different. Our common features with that
work consist in use of p−8Be dynamics to obtain the res-
onance and in obtaining the p−8Be Woods–Saxon poten-
tial from 9Be photodisintegration data. The big differences
consist in the conditions from which parameters of the po-
tential are deduced, in the parameters themselves, and in
a prescription to calculate the resonance. In [4] the two–
body dynamics were used both for the inital ground state
and the final continuum state of 9Be. Depths of the po-
tentials were varied whereas their range and diffuseness
were kept at their ”classic” vaues. The data of [13] were
fitted (probably up to a normalization). The fit was only
moderately good. The line shape of the 9B resonance was
computed as if it were excited due to a fictitious dipole
transition from the ground state of 9Be. Our potentials
were deduced [3] at the assumption of three-body α+α+n
dynamics for the ground state of 9Be and two–body dy-
namics for its continuum. Range and diffuseness of the
potential were varied in addition to the depth. The data
of [13] were concluded to be less preferable, and the al-
ternative earlier data were fitted without freedom in an
absolute normalization. The fit is statistically quite good.
The line shape of the 9B resonance was computed from
(11). The Coulomb interaction was treated more accu-
rately, and also the pole position E0 − iΓ/2 was calcu-
lated. Keeping range and diffuseness of the potential at
their ”classic” values was perhaps an important point in
the analysis of [4] which allowed obtaining correct results
even at assumptions that are not completely valid. An
interesting point is that the different prescriptions for cal-
culating a resonance in our work and in [4] lead to similar
results. To check this we calculated the resonance for the
potential of [4] with the prescription of (11). The results
are Emax = 1.06 MeV, FWHM=1.47 MeV, and they are
close to those reported in [4]. (The difference in treatment
of the Coulomb interaction should also be taken into ac-
count here.)

In [17] the energy of the 1/2+ first excited state of 9B
was derived from R–matrix parameters fitted [12] to the
9Be data of [13] and from values of the Coulomb displace-
ment energy calculated with the help of the shell model.
The result E0 ' 2 MeV differs considerably from that of
our work and [4] leading to the inverted value of the so
called Thomas–Ehrmann shift. As it is mentioned above
in connection with our comparisons to Refs. [12,4], use of
this particular set of data to derive R–matrix parameters
might be a disadvantage.

We are indebted to M.V. Zhukov for useful discussion
in the course of this study. A part of this work was done
during the stay of V.D.E. at the Niels Bohr Institute, and
he expresses his gratitude for the kind hospitality. The
work was partially supported by Russian Foundation for
Basic Research (grants 96-15-96548 and 97-02-17003).
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Appendix
Residue properties of virtual state poles of a
scattering amplitude

In the vicinity of the virtual state pole the two–body scat-
tering amplitude behaves according to (3). We obtain a
formula that expresses a residue c0 in terms of a quadra-
ture taken over the virtual state eigenfunction. The result
is c0 = (−1)l/Iv, where Iv is given by (A4) below with
∆(r) entering the virtual state eigenfunction (A3). The
latter function is readily calculated from the Schrödinger
equation. (The consideration is formally applicable to a
motion in a central potential with any orbital momentum
l although the l > 0 virtual state case is of little interest.)

Let ψ(r) be the solution to the Schrödinger equa-
tion regular at the origin. Beyond the range of a po-
tential the function χ(r) = rψ(r) behaves as exp(ikr) +
(−1)l+1S−1(k) exp(−ikr). Complex k values are allowed.
A virtual state corresponds to a pole of the S–matrix S(k)
at k = −iκ, κ being real and positive.3 In terms of κ,
χ(r) = exp(κr) + (−1)l+1S−1 exp(−κr) at large r, so the
boundary condition for virtual states consists in absence
of the decreasing exponential. If the eigenvalue is suffi-
ciently small then the eigensolution can be found directly
using a logarithmic derivative at sufficiently large r. This
holds true in our case.

For bound states, the well–known formula correspond-
ing to that we want to derive is the following [18,19]. Let
the bound state wave function be normalized to unity, and
A the coefficient in its asymptotics A exp(−κr). Then

f(k)→ i(−1)lA2

2κ
1

k − iκ (A1)

as k tends to iκ.
In the virtual state case we shall proceed from the

relation

∂χ

∂r

∂χ

∂E
− χ ∂2χ

∂r∂E
=

2m
h̄2

∫ r

0

χ2(r′)dr′. (A2)

It is similar to that used in [6] for the derivation of (A1).
We take r to be large enough so that in the vicinity of the
virtual state pole χ(r, E) ' exp(κr)+α(E+ Ē) exp(−κr).
Here Ē = (h̄κ)2/2m. The pole term in the scattering am-
plitude is then (−1)l+1(2κα)−1(E + Ē)−1, and the con-
stant α is to be found. We denote χv(r) the virtual state
eigenfunction, so that χv = χ(E = −Ē). We set

χv(r′) = exp(κr′) +∆(r′). (A3)

Here ∆(r) is a rapidly decreasing function. We substi-
tute (A3) into the right–hand side of (A2) and equate the
terms of the orders of exp(κr) and unity in both sides
of (A2) at E tending to −Ē. Then we obtain 2κα =
−(2m/h̄2)(Iv/2κ), with

3 It is implied that at large r the potential decreases more
rapidly than exp(−κr), cf [6]

Iv = 1− 2κ
∫ ∞

0

[∆2(r) + 2∆(r) exp(κr)]dr. (A4)

The product ∆(r) exp(κr) is a rapidly decreasing function,
so the integral converges. Finally,

f(k)→ i(−1)l

Iv

1
k + iκ

(A5)

as k tends to −iκ, κ > 0.
To display an analogy between the bound and virtual

state pole cases, we note that the right–hand side of (A1)
can be rewritten as

i(−1)l

2κNb
1

k − iκ , (A6)

where Nb is the norm of the eigenfunction χb behaving
as exp(−κr) at r tending to infinity. If one sets χb(r) =
exp(−κr) + ∆(r) then 2κNb takes just the form of (A4)
with the replacement κ→ −κ.
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